
IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 5, May 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4524 94

A Framework for Code Offloading in Wearable

Computing

Divya V
1
, Suresh Kumar K R

2

PG Scholar (Software Engg), Dept. of Information Science and Engineering, M S Ramaiah Institute of Technology

(Autonomous Institute Affiliated to VTU) Bangalore, Karnataka, India
1

Assistant Professor, Dept. of Information Science and Engineering, M S Ramaiah Institute of Technology

(Autonomous Institute Affiliated to VTU) Bangalore, Karnataka, India
2

Abstract: Wearable Computing provides a latest form of communication between computer and human such as

Google glass, iWatch, SmartWatch which can be worn and always be accessible. Wearable devices come with limited

computational capability, battery capacity, and storage. There is a need to increase the same and is done using three tier

architecture having wearable computing devices, mobile devices and a remote server by using the code offloading

technique. Here computational tasks are offloaded from wearable computing devices to local mobile devices or remote

server according to the space and computational capability requirement of the application. A strategy to increase the

number of tasks which have to be computed on wearable devices with decreased delay is proposed. A demonstration

model is developed to show the offloading process. The values are observed to show the delay if code is not offloaded

and they are compared to show the improved efficiency of the model.

Keywords: Wearable computing, code offloading, three tier architecture, mobile devices, remote server.

I. INTRODUCTION

Wearable computing devices are the electronic devices

which are worn on the body or clothes such as Google

glass, SmartWatch, Magic rings, Headbands, Bracelets etc.

Application of wearable devices such as reality

augmentation, healthcare monitoring and object or gesture

recognition require high communication capability and

fast processing in an efficient manner with the less usage

of energy. The wearable devices are of limited weight and

size as it has to be worn on the body and has less

processing capability. Hence it is hard to process more

complicated applications. To deal with this computation

problem, there is a need for optimized solution which

makes the wearable devices to work efficiently without

any latency. It is motivated by the fact that users who are

using it cannot tolerate much delay while using and

operating the wearable device.

Considering the size and weight constraints of wearable

computing devices, they are provided with low end

hardware and powered by batteries with limited capacity.

Hence, they can only run some simple applications which

requires less computation capability. To improve and

support more complex applications with improved energy

efficiency, we propose and use a framework with three tier

architecture and code offloading capability. In this

proposed framework, the first tier is comprised of the

wearable devices, the second tier is made up of the mobile

devices and the third tier contains the remote servers

normally referring to as cloud.

This framework concentrates on designing an optimal

resource management for the complex task computation

by the wearable devices. Here some codes from wearable

computing devices are offloaded to mobile devices and

then to the remote servers (or cloud) depending on the

resource requirement. This results in processing of

multiple complex tasks on wearable devices with less

delay and increased efficiency. The different layers of the

proposed three tier architecture communicate through

different technologies. Bluetooth or Zigbee technologies

are used for the communication between wearable devices

and mobile devices within short-range of distance. The

communication between mobile devices and remote server

happens using WiFi or Long Term Evolution (LTE)

networks.

II. RELATED WORK

Wearable computing technology provides many

opportunities which give rise to the ideation and nurture of

people of all fields. In this age of technology, the reliance

on the sophisticated computing devices and associated

interfaces are present everywhere. This requirement made

way for the growth of wearable computing technology.

These are the mobile computers which can assist people in

personal activities by aiding and escalating everyday life.

In reality, the constraints imposed such as processor

power, battery life, display brightness, and network

coverage have led to the delay in the global introduction of

wearable computing devices. However in the past few

years many successful implementations and the

continuous effort to decrease the size of computers

promise the emergence of more feasible applications.

Outsourcing of computations from mobile devices to the

remote cloud is a critical technique as explained by several

researchers in their work.

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 5, May 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4524 95

To enhance the communication capability [1], data

processing [2], and outsource antivirus services [3] from

mobile devices to cloud many techniques were used and

these techniques lead to high communication cost as they

deal with complete code offloading from mobile devices

to cloud. Hence partition techniques were emerged to

outsource a part of the application to increase the

performance with reduced cost.

MAUI [4] provides code offloading in the form of method

level for Microsoft .NET applications. This framework is

platform specific. This offers offloading code from mobile

devices to remote servers. Offload decisions are taken at

runtime. It decides which methods should be executed on

remote infrastructure.

CloneCloud [5] technique uses a combination of static

analysis and dynamic profiling to partition applications

automatically at a fine granularity which optimizes

execution time and energy use for a target computation in

the cloud and communication environment. At runtime,

the application partitioning which is dynamic is effected

by migrating a thread from the mobile device at a chosen

point to the clone in the cloud, executing there for the

remainder of the partition, and re-integrating the migrated

thread back to the mobile device. Here prototype designed

delivers up to 20x speed and 20x energy reduction for the

simple applications.

Static Partitioning [6] technique mainly deals with

improving battery lifetime where multimedia data are

heavily processed when transferred between the server and

the handheld. To minimize battery consumption on the

handheld device, a tradeoff has been made between the

energy consumed by computational processes versus that

by data transfer.

Gaussian Linear Algebraic technique [7] is used to offload

the code from mobile devices to remote server. It solves a

system of linear algebraic equations. In Procedural Call

technique [8], tasks are partitioned into server task and

client task. Sever tasks are processed in server. Client

tasks are processed in mobile device. Computation and

data sharing are handled dynamically at the time of

procedure calls.

Branch and Bound algorithm [9] technique investigates

hardware/software partitioning, a key problem in

embedded co-design system. An efficient algorithm is

proposed to optimally solve the problem in which the

communication overhead is taken into account. The

proposed algorithm constructs an efficient branch-and-

bound approach to partition the hot path selected by path

profiling techniques. The techniques for generation of

good initial solution and the efficient lower bound for the

feasible solution are customized in branch and bound

search.

In Comparison technique [10] local/remote decision logic

is incorporated in the proxy of each component that is

considered suitable for remote execution. The proxy can

be either defined by the programmer at development time

or automatically created using profile data when the

application is deployed on the server for the client to

download. When the interface method of the proxy is

invoked, the proxy evaluates and compares the local

execution and offloading costs for the invocation. If the

method is determined to be executed locally, the proxy

also determines the optimization level for the methods of

the local implementation of the component.

Abstraction technique [11] partitions a program into the

distributed subprograms by producing a program

abstractions where all physical memory references are

mapped into the references are mapped into the references

of abstract memory location. . This scheme partitions an

ordinary program into a clientserver distributed program,

such that the client code runs on the handheld device and

the server code runs on the server. Partition analysis and

program transformation guarantee correct distributed

execution under all possible execution contexts. A

polynomial time algorithm to find the optimal program

partition for given program input data is given. An option-

clustering approach to handle different program partitions

for different program execution options. Experimental

results show significant improvement of performance and

energy.

ThinkAir [12] is the parallel execution technique in cloud

for code offloading. Unlike other techniques, ThinkAir do

not offload the entire code and instead concentrates on

some part of the code to be offloaded. In the proposed

framework, we use ThinkAir technique and adopt it with

our architecture with some minimal changes. In our

proposed system, we use the computational capability of

ThinkAir technique on the wearable devices.

III. THREE TIER ARCHITECTURE

The three tier architecture as shown in Fig 1, the code is

offloaded efficiently from wearable device from tier 1 to

higher efficient devices in the tier 2 and tier 3.

In the proposed architecture, the wearable application is

categorized into set of wearable device tasks and set of

non-wearable device tasks based on the computational

capacity of the devices in the respective tiers. Wearable

device tasks in tier 1 are the ones that are carried out on

wearable devices and cannot be offloaded such as sensing

or displaying.

These tasks are denoted as non-off loadable tasks i.e., non-

o-tasks. Non wearable tasks are the ones that cannot be

performed on the wearable devices and needs to be

offloaded onto the higher computational devices or onto

cloud. These are referred as off loadable tasks, also known

as o-tasks. The set of tasks carried out by the mobile

devices in tier 2 are the non-o-tasks of tier 2 and the ones

that are offloaded to tier 3 are the o-tasks of tier 2.

Tier 1 and tier 2 comprises of both non-o-tasks and o-tasks

based on their computational capacity. Assuming the tier 3

to be of with high computational servers/cloud, tier 3 will

not offload the code further and hence comprises of only

non-o-tasks.

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 5, May 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4524 96

Figure 1: Three tier Architecture

IV. CODE OFFLOADING

Offloading [14] is a process of executing the code on

remote servers or on cloud or on the high computational

devices which are delegated by wearable devices or

mobile devices or low computational devices. In this

framework there are wearable devices in tier 1, a smart

mobile phone in tier 2 and a high computation

server/computer (normally referring to cloud) in tier 3.

Both tier 1 and tier 2 constitutes nodes with mobility. Tier

1 and tier 2 communicate using Bluetooth/ZigBee

technology while tier 2 and tier 3 communicates using

WiFi/LTE network. The o-tasks are offloaded using client

server model from wearable devices to mobile device and

from mobile device to the server/cloud. When wearable

device detects the o-tasks through Bluetooth it offloads the

code to the mobile device and mobile device executes the

tasks if it does not exceed its capacity. If the o-tasks

offloaded from the wearable device to mobile device

exceed the capacity of mobile device, then that task is

identified as o-tasks in tier 2 and it is offloaded to the

server/cloud. There is no further offloading of tasks from

tier 3 and contains only non-o-tasks.

V. EXPERIMENTAL SETUP

To demonstrate the proposed three tier architecture

framework for code offloading, we take the health

monitoring system as an application. The experimental

setup is as shown in Fig 2. A heart rate sensor with

Bluetooth compatibility as a wearable device in tier 1and

is referred as an embedded unit. We have a smart phone in

tier 2 referring to as the android unit. In tier 3, we have a

web server/cloud.. Due to the size limitation, the heart rate

sensor in the embedded unit does not have memory and

hence when it detects the heart rate for specified time, it

offloads the readings to the mobile device present in the

android unit. Mobile devices receives the heart rate and

stores the specified readings. Mobile device also has

certain limitations. It cannot identify critical situations.

Hence from mobile device all the readings are offloaded to

remote server in tier 3 having a high computational

capability and are monitored by hospital technicians. Once

remote server identifies the critical situation, it tracks the

location of the patient from the mobile GPS and gives

instant message to the emergency/ambulance services.

Figure 2: Experimental Setup

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 5, May 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4524 97

VI. CONCLUSION

The majority of the earlier techniques dealt with

offloading code directly to the remote server though the

task was not so complex and resulted in the wastage of

resources in the high computational servers. Here, we use

three tier architecture and depending on the computational

requirements, the code is offloaded the higher tiers.

The use of mobile device in tier 2 decreases the

communication latency. The wearable devices with limited

capabilities cannot perform all the tasks and hence need

the tasks/code to be offloaded to the high computational

devices. The proposed system with the offloading

capability is efficient when the wearable device alone

cannot perform the tasks within their limited capabilities.

REFERENCES

[1] Luo, Xun. "From augmented reality to augmented computing: a

look at cloud-mobile convergence." Ubiquitous Virtual Reality,
2009. ISUVR'09. International Symposium on. IEEE, 2009.

[2] Marinelli, Eugene E. Hyrax: cloud computing on mobile devices

using MapReduce. No. CMU-CS-09-164. Carnegie-mellonuniv
Pittsburgh PA school of computer science, 2009.

[3] Oberheide, Jon, Kaushik Veeraraghavan, Evan Cooke, Jason Flinn,

and FarnamJahanian. "Virtualized in-cloud security services for
mobile devices." In Proceedings of the First Workshop on

Virtualization in Mobile Computing, pp. 31-35. ACM, 2008.

[4] Cuervo, Eduardo, ArunaBalasubramanian, Dae-ki Cho, Alec
Wolman, Stefan Saroiu, Ranveer Chandra, and ParamvirBahl.

"MAUI: making smartphones last longer with code offload."

In Proceedings of the 8th international conference on Mobile
systems, applications, and services, pp. 49-62. ACM, 2010.

[5] Chun, Byung-Gon, SunghwanIhm, PetrosManiatis, MayurNaik, and

Ashwin Patti. "Clonecloud: elastic execution between mobile
device and cloud." InProceedings of the sixth conference on

Computer systems, pp. 301-314. ACM, 2011.

[6] Li, Zhiyuan, Cheng Wang, and Rong Xu. "Task allocation for
distributed multimedia processing on wirelessly networked

handheld devices." InParallel and Distributed Processing

Symposium., Proceedings International, IPDPS 2002, Abstracts and
CD-ROM, pp. 6-pp. IEEE, 2001.

[7] Rudenko, Alexey, Peter Reiher, Gerald J. Popek, and Geoffrey H.

Kuenning. "Saving portable computer battery power through
remote process execution."ACM SIGMOBILE Mobile Computing

and Communications Review 2, no. 1 (1998): 19-26.

[8] Li, Zhiyuan, Cheng Wang, and Rong Xu. "Computation offloading
to save energy on handheld devices: a partition scheme."

In Proceedings of the 2001 international conference on Compilers,

architecture, and synthesis for embedded systems, pp. 238-246.
ACM, 2001.

[9] Jigang, Wu, and SrikanthanThambipillai. "A branch-and-bound

algorithm for hardware/software partitioning." In Signal Processing
and Information Technology, 2004. Proceedings of the Fourth IEEE

International Symposium on, pp. 526-529. IEEE, 2004.
[10] Chen, Guangyu, Byung-Tae Kang, MahmutKandemir, Narayanan

Vijaykrishnan, Mary Jane Irwin, and RajarathnamChandramouli.

"Studying energy trade offs in offloading computation/compilation

in java-enabled mobile devices." Parallel and Distributed Systems,

IEEE Transactions on15, no. 9 (2004): 795-809.

[11] Wang, Cheng, and Zhiyuan Li. "A computation offloading scheme
on handheld devices." Journal of Parallel and Distributed

Computing 64, no. 6 (2004): 740-746.

[12] Kosta, Sokol, AndriusAucinas, Pan Hui, Richard Mortier, and
Xinwen Zhang. "Thinkair: Dynamic resource allocation and parallel

execution in the cloud for mobile code offloading." In INFOCOM,

2012 Proceedings IEEE, pp. 945-953. IEEE, 2012.
[13] Flores, Huber, Pan Hui, SasuTarkoma, Yong Li, Satish Srirama,

and RajkumarBuyya. "Mobile code offloading: from concept to

practice and beyond." Communications Magazine, IEEE 53, no. 3
(2015): 80-88.

[14] Cheng, Zixue, Peng Li, Junbo Wang, and Song Guo. "Just-in-time

code offloading for wearable computing." Emerging Topics in

Computing, IEEE Transactions on 3, no. 1 (2015): 74-83.

